HCN4 subunit expression in fast-spiking interneurons of the rat spinal cord and hippocampus
نویسندگان
چکیده
Hyperpolarisation-activated (Ih) currents are considered important for dendritic integration, synaptic transmission, setting membrane potential and rhythmic action potential (AP) discharge in neurons of the central nervous system. Hyperpolarisation-activated cyclic nucleotide-gated (HCN) channels underlie these currents and are composed of homo- and hetero-tetramers of HCN channel subunits (HCN1-4), which confer distinct biophysical properties on the channel. Despite understanding the structure-function relationships of HCN channels with different subunit stoichiometry, our knowledge of their expression in defined neuronal populations remains limited. Recently, we have shown that HCN subunit expression is a feature of a specific population of dorsal horn interneurons that exhibit high-frequency AP discharge. Here we expand on this observation and use neuroanatomical markers to first identify well-characterised neuronal populations in the lumbar spinal cord and hippocampus and subsequently determine whether HCN4 expression correlates with high-frequency AP discharge in these populations. In the spinal cord, HCN4 is expressed in several putative inhibitory interneuron populations including parvalbumin (PV)-expressing islet cells (84.1%; SD: ±2.87), in addition to all putative Renshaw cells and Ia inhibitory interneurons. Similarly, virtually all PV-expressing cells in the hippocampal CA1 subfield (93.5%; ±3.40) and the dentate gyrus (90.9%; ±6.38) also express HCN4. This HCN4 expression profile in inhibitory interneurons mirrors both the prevalence of Ih sub-threshold currents and high-frequency AP discharge. Our findings indicate that HCN4 subunits are expressed in several populations of spinal and hippocampal interneurons, which are known to express both Ih sub-threshold currents and exhibit high-frequency AP discharge. As HCN channel function plays a critical role in pain perception, learning and memory, and sleep as well as the pathogenesis of several neurological diseases, these findings provide important insights into the identity and neurochemical status of cells that could underlie such conditions.
منابع مشابه
Intrathecal Amylin and Salmon Calcitonin Affect Formalin Induced c-Fos Expression in the Spinal Cord of Rats
Background: Amylin and Salmon Calcitonin belong to the calcitonin family of peptides and have high affinity binding sites in the rat spinal cord. The aim of this study was to characterize receptors for Amylin and Salmon Calcitonin functionally in the spinal cord of rats. We assessed the expression of c-Fos in response to intraplantar formalin in the lumbar regions of the spinal cord in consciou...
متن کاملFunctional and molecular differences between voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus.
We have examined gating and pharmacological characteristics of somatic K+ channels in fast-spiking interneurons and regularly spiking principal neurons of hippocampal slices. In nucleated patches isolated from basket cells of the dentate gyrus, a fast delayed rectifier K+ current component that was highly sensitive to tetraethylammonium (TEA) and 4-aminopyridine (4-AP) (half-maximal inhibitory ...
متن کاملAssociation of morphine-induced analgesic tolerance with changes in gene expression of GluN1 and MOR1 in rat spinal cord and midbrain
Objective(s): We aimed to examine association of gene expression of MOR1 and GluN1 at mRNA level in the lumbosacral cord and midbrain with morphine tolerance in male Wistar rats. Materials and Methods: Analgesic effects of morphine administrated intraperitoneally at doses of 0.1, 1, 5 and 10 mg/kg were examined using a hot plate test in rats with and without a history of 15 days morphine (10 mg...
متن کاملPrenatal stress increased γ2 GABAA receptor subunit gene expression in hippocampus and potentiated pentylenetetrazol-induced seizure in rats
Objective(s): Stress during pregnancy is able to bring extensive effects on neurobehavioral development in offspring. The GABAergic system plays a pivotal role in neuronal excitability, which can be affected by prenatal stress (PS). This study aimed to evaluate impact of the PS on γ2 subunit of gamma-aminobutyric acid A (GABAA) receptor gene expression in the hippocamp...
متن کاملThe Effect of Aerobic Exercise and Melatonin on COX-2 Gene Expression in Spinal Cord Tissue and Neuropathic Pain Behavioral Responses in a Diabetic Rat Model
Introduction: Neuroinflammation plays an important role in developing many neurological changes in diabetic patients. This study aimed to investigate the effect of aerobic exercise and melatonin on COX-2 expression in spinal cord tissue and behavioral responses to pain caused by diabetic neuropathy in a rat model. Materials and Methods: Forty eight-week-old male Wistar rats (weight range 204 ± ...
متن کامل